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Abstract

Fabrication tolerances and sidewall scattering losses in self-imaging

waveguide devices are ameliorated by a partial-etch fabrication tech-

nique. Using a modal decomposition model, we find that the self-imaging

plane’s depth of focus increases with a reduction in etch depth. A broad ‘
depth of focus in the self-image plane relaxes the fabrication tolerance of :
the device’s critical width dimension for a specified device performance. |
Trade-offs for this increased depth of focus include a modest increase in :
device length and a slight reduction in peak coupling efficiency.
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1. Introduction

Figure 1. Architecture
for optical phased-

array antenna control.

Architecture is
subdivided into four
integrated photonic
subsystems (IPSs).

Research is under way at the Communications and Electronics Command
(CECOM) and the Army Research Laboratory (ARL) in the development
of integrated photonic subsystems (IPSs) for use in the optical control of
phased-array antennas for communications on the move. Figure 1 shows
a block diagram of the phased-array controller. In the figure, the module
labeled IPS 2 provides the first level of signal splitting required to feed the
antenna, which might vary from hundreds to thousands of elements. ARL
is developing optical power-splitting devices to be used in IPS 2.

Desired characteristics of a 1 x N splitter for this application include a
value for N of about 16, the ability to split both the transverse electric (TE)
and transverse magnetic (TM) modes, low crosstalk between the two
polarization modes, uniformity among the split channels, low throughput
loss, compact size, and ease of manufacture. For N > 4, fiber-optic polar-
ization preserving splitters are impracticable. Therefore, the splitting
must be performed on an integrated optical substrate. Numerous passive
integrated optical beamsplitting techniques have been proposed and
demonstrated. These include but are not limited to Y-junction branching
waveguides, evanescent field directional couplers, computer-generated
waveguide holograms, multimode interference (MMI) splitters, and
radiative power splitters. For achieving the desired device characteristics,
the MMI approach holds the greatest promise.

The practical implementation of MMI devices in guided-wave architec-
tures largely depends on the device’s fabrication tolerance, as defined by
such performance metrics as excess optical loss. Using the paraxial ap-
proximation for strongly guided (i.e., deeply etched) structures, Besse et
al [1] derived a closed-form approximation for the critical width dimen-
sion of the MMI region. For these deeply etched devices, they found that
the fabrication tolerance is independent of the splitting ratio N and
proportional to the output channel separation D.

A partial or shallow etch of the MMI device, however, is advantageous in
many devices. For example, reduced sidewall interaction results in lower

Data i
l R
g P>
Phase Modulator
locked Analog =
lasers phase/
Splitter/ > ) {ﬂﬂ,f
=f1— o amplitude
L’l——"" fe=fi—foft> amplifier con;;rol
Combiner N
Phase
fc = microwave frequency N . element
array
>
IPS 1 IPS 2 IPS 3 IPS 4




excess loss and decreased nonradiative surface recombination in
waveguide ring lasers [2]. Berry and Burke [3] used the discrete spectral
index method to predict the self-imaging length and throughput of MMI
devices as a function of etch depth. Shortly thereafter, 1 x 16 splitters with
high throughput and good uniformity were demonstrated that were built
by the partial-etch technique [4].

Since MMI devices are based on the principle of Talbot imaging (also
known as self-imaging), the imaging plane’s depth of focus can signifi-
cantly affect the device fabrication tolerance. Recently, Smit et al [5]
reported an increase in image plane focal depth with an increase in input
rib width for deeply etched structures. In addition, excess loss was re-
duced, since a smaller fraction of the signal was contained in the higher
order modes.

In this report, we review the results of a theoretical investigation of the
depth of focus dependence on etch depth in MMI devices. We find that a
shallow etch depth yields an extended depth of focus and thus a broader
fabrication tolerance, at the expense of a slight penalty in throughput.
This throughput loss results from a reduction in the number of modes
supported within the MMI region, and we show that this loss is negligible
for etch depths beyond mode cutoff.




2. Theory

Figure 2. Perspective
viewofalx1
multimode
interference device.

Figure 3. Transverse
waveguide structure
with film indices and
thickness at 1.319 pm:
cross section through
MMI region.

Since a 1 x 1 MMI device produces a single self-image of the input, this
configuration (fig. 2) is the simplest for investigating the effect of etch
depth on imaging plane depth of focus. We make the following assump-
tions concerning the MMI structure under investigation (fig. 2): (1) the
depth of focus is analyzed at the first single self-image plane, (2) the input
rib, MMI region, and output rib are all defined in a single etch step, and
(3) the device sidewalls are vertical.

Figure 3 shows the refractive index and thickness values used to define
the transverse waveguide structure. These values correspond to an
InGaAs/InAlAs waveguide operating at 1.319 um. Although these pa-
rameters vary from one waveguide structure to the next, our analysis is
presented in terms of mode index difference between the MMI region and
the surrounding etched regions; this approach allows us to generalize to
other structures.

The etch depth of those areas surrounding the MMI region determines the
mode index difference. Together with the MMI region width, this index
difference determines the number of lateral modes supported within the
MMI region. These modes will be excited to varying degrees by an input
to the MMI region. Since each mode propagates with a slightly different
phase velocity, the modes become dephased. At the place where the
accumulated phased differences among the modes reach an integral
multiple of 27, a self-image of the input to the MMI region is recon-
structed; i.e., the image is created solely by virtue of diffraction. No
optical elements are required.

To reduce the three-dimensional structure of figure 2 to a two-
dimensional structure, we have modeled the self-image formation by
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using the effective index method along the transverse waveguide dimen-
sion. The lateral modes of the MMI region are then calculated. The rib
waveguide mode is decomposed into these lateral MMI modes (which are
propagated the length of the MMI region), and the self-image is con-
structed [6,7]. As the etch depth is increased, a greater number of lateral
modes are supported, not only in the MMI region, but also in the input
rib waveguide. However, in our calculations, we assume that only the
fundamental mode of the input rib waveguide is excited.




3. Results

The gray-scale contour plots of the MMI region’s electric field amplitude
(fig. 4) show the field evolution through the MMI region for three charac-
teristic etch depths: very shallow, at mode cutoff, and very deep. The
input rib width is fixed at 2 pm, and the MMI region width is fixed at

10 um for each of the etch depths. Two points are immediately apparent
from figure 4. First, the MMI region’s self-imaging length is longer for
shallow etch depths; second, the depth of focus and input field width are
greater with shallower etch depths. These observations of a waveguide
self-imaging system parallel the general behavior of a single-lens imaging
system. For a fixed aperture size, as the imaging distance is increased,
both the depth of focus and the focused spot size are increased [8].

Berry and Burke [3] used the discrete spectral index method to predict the
position of the self-imaging plane as a function of etch depth. Our results,
based on the effective index method and modal propagation, corroborate
their findings. The increase in self-imaging plane length with decreasing
() etch depth can be attributed to the effective width of the MMI region. The
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Figure 4. Top view of MMI region showing a gray-scale plot of TE field. (a) Etch depth 0.52 um; only
3 lateral modes supported in MMI region. (b) Etch depth 0.82 um (transverse mode is at cutoff);

10 lateral modes supported in MMI region. (c) Semi-infinite etch depth assumed (i.e., lateral mode
index surrounding MMI region and input/output rib waveguides is unity); 49 lateral modes
supported in MMI region.




effective width W, is equal to the MMI region’s physical width W, cor-
rected by the Goos-Hanchen penetration depth [9]:

20
— A Mat 1
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where A is the free space wavelength, n,,, and . are the transverse
mode indices of the lateral (etched) and MMI (unetched) regions, respec-
tively, o= 0 for TE polarization, and o = 1 for TM polarization. In this
expression, we assigned a fixed effective width for all the lateral modes in
the MMI region. (Our actual analysis is more rigorous.) Given this etch-
depth—dependent effective width, the self-image plane positions of a 1 x
N center-fed MMI coupler are approximated by [10]
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The analytical approximations of equations (1) and (2) are in good agree-
ment with the more exact modal propagation analysis of the self-imaging
length’s etch-depth dependence (see fig. 5). As the MMI region width is
increased, however, the analytical approximation breaks down.

The efficacy of MMI devices in photonic switching systems is contingent
on the relative ease in fabricating high-throughput devices. The imaging
plane depth of focus determines the fabrication tolerance on the MMI
region’s critical width dimension. In this report, we use the coupling
efficiency from the self-image formed at the end of the MMI region into
the output rib as the defining metric for depth of focus. We calculate the
coupling efficiency by performing an overlap integral of the MMI field
with the mode supported by the output rib. This efficiency is converted to
excess device loss.

In figure 6, we plot the depth of focus (assuming a maximum permissible
excess loss of 1 dB) versus the mode index difference between the MMI
and lateral regions for TE polarization. For mode index differences less
than that corresponding to mode cutoff in the lateral region, the depth of
focus varies rapidly with mode index difference.

In figure 7, we used the effective index method to plot the depth of focus
versus etch depth for depths down to mode cutoff. In the limit of a very
deep etch, the effective index of the lateral region approaches unity,
yielding an asymptotic limit for the depth of focus. We can approximate
the MMI device fabrication tolerance by differentiating equation (2) with
respect to the physical device width W and rearranging:
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For our test structure, a deep etch yields a depth of focus of about 12 pum,
which requires a tolerance of +0.12 pm in the MMI region width. At mode
cutoff, the depth of focus is increased to about 28 um, for a more easily
manufacturable MMI width tolerance of £0.26 um.
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Figure 8. Maximum
coupling efficiency of
self-image into output
rib waveguide as a
function of etch
depth. Transverse
mode is cut off at etch
depth of 0.82 pm.

Although the data presented here correspond to the specific structure
selected, the basic trend of an increased depth of focus (and thus fabrica-
tion tolerance with a decreased etch depth) is generalizable to arbitrary
waveguide structures. As shown in figure 4, the shallower etch depths
produce a broader fundamental mode in the fixed 2-um-wide input rib.
This extended depth of focus with a laterally wider input field is consis-
tent with the findings of Smit et al [5], who investigated extending the
depth of focus for deeply etched MMI devices by increasing the physical
width of the input rib.

Several drawbacks arise from a reduced MMI device etch depth. We have
already characterized the increase in device length due to the broader
effective width as given by equations (1) and (2). Next, the etch depth
affects self-image quality. With a smaller mode index difference between
the MMI and laterally etched regions, fewer lateral modes are available
for reconstructing the input for self-image formation. The consequence of
the distorted image is to reduce the coupling efficiency into the output
rib. However, figure 8 shows that a reduction in peak coupling efficiency
from the distorted image into the output rib is negligible for etch depths
to mode cutoff or greater. Finally, a shallower etch depth in the N output
ribs requires a larger output rib separation to avoid mutual coupling
among the ribs. If the output rib separation is accomplished with
waveguide S-bends, a larger radius of curvature is required, because of
the weaker mode confinement.
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4. Conclusions
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